5 research outputs found

    Effects of Human and Porcine Adipose Extracellular Matrices Decellularized by Enzymatic or Chemical Methods on Macrophage Polarization and Immunocompetence

    Get PDF
    The decellularized extracellular matrix (ECM) obtained from human and porcine adipose tissue (AT) is currently used to prepare regenerative medicine bio-scaffolds. However, the influence of these natural biomaterials on host immune response is not yet deeply understood. Since macrophages play a key role in the inflammation/healing processes due to their high functional plasticity between M1 and M2 phenotypes, the evaluation of their response to decellularized ECM is mandatory. It is also necessary to analyze the immunocompetence of macrophages after contact with decellularized ECM materials to assess their functional role in a possible infection scenario. In this work, we studied the effect of four decellularized adipose matrices (DAMs) obtained from human and porcine AT by enzymatic or chemical methods on macrophage phenotypes and fungal phagocytosis. First, a thorough biochemical characterization of these biomaterials by quantification of remnant DNA, lipids, and proteins was performed, thus indicating the efficiency and reliability of both methods. The proteomic analysis evidenced that some proteins are differentially preserved depending on both the AT origin and the decellularization method employed. After exposure to the four DAMs, specific markers of M1 proinflammatory and M2 anti-inflammatory macrophages were analyzed. Porcine DAMs favor the M2 phenotype, independently of the decellularization method employed. Finally, a sensitive fungal phagocytosis assay allowed us to relate the macrophage phagocytosis capability with specific proteins differentially preserved in certain DAMs. The results obtained in this study highlight the close relationship between the ECM biochemical composition and the macrophage’s functional role.This work has been supported by the European Union’s Horizon 2020 Research and Innovation Programme (H2020-FETOPEN-2018-2020, NeuroStimSpinal Project, Grant Agreement No. 829060). M.C. acknowledges the European Union0s Horizon 2020 Research and Innovation Programme for her contract under the NeuroStimSpinal Project. LC is grateful to the Universidad Complutense de Madrid for an UCM fellowship

    Candida albicans/Macrophage Biointerface on Human and Porcine Decellularized Adipose Matrices

    Get PDF
    Macrophages, cells effective in sensing, internalizing and killing Candida albicans, are intertwined with the extracellular matrix (ECM) through different signals, which include the release of specific cytokines. Due to the importance of these interactions, the employment of in vitro models mimicking a fungal infection scenario is essential to evaluate the ECM effects on the macrophage response. In this work, we have analyzed the effects of human and porcine decellularized adipose matrices (DAMs), obtained by either enzymatic or organic solvent treatment, on the macrophage/Candida albicans interface. The present study has allowed us to detect differences on the activation of macrophages cultured on either human- or porcine-derived DAMs, evidencing changes in the macrophage actin cytoskeleton, such as distinct F-actin-rich membrane structures to surround the pathogen. The macrophage morphological changes observed on these four DAMs are key to understand the defense capability of these cells against this fungal pathogen. This work has contributed to the knowledge of the influence that the extracellular matrix and its components can exert on macrophage metabolism, immunocompetence and capacity to respond to the microenvironment in a possible infection scenario.This work has been supported by the European Union’s Horizon 2020 Research and Innovation Programme (H2020-FETOPEN-2018-2020, NeuroStimSpinal Project, Grant AgreementNo. 829060). M.C. acknowledges the European Union0s Horizon 2020 Research and InnovationProgramme for her contract under the NeuroStimSpinal Project. LC is grateful to the Universidad Complutense de Madrid for a UCM fellowshi

    Enhanced Adipogenic Differentiation of Human Dental Pulp Stem Cells in Enzymatically Decellularized Adipose Tissue Solid Foams

    Get PDF
    Engineered 3D human adipose tissue models and the development of physiological human 3D in vitro models to test new therapeutic compounds and advance in the study of pathophysiological mechanisms of disease is still technically challenging and expensive. To reduce costs and develop new technologies to study human adipogenesis and stem cell differentiation in a controlled in vitro system, here we report the design, characterization, and validation of extracellular matrix (ECM)-based materials of decellularized human adipose tissue (hDAT) or bovine collagen-I (bCOL-I) for 3D adipogenic stem cell culture. We aimed at recapitulating the dynamics, composition, and structure of the native ECM to optimize the adipogenic differentiation of human mesenchymal stem cells. hDAT was obtained by a two-enzymatic step decellularization protocol and post-processed by freeze-drying to produce 3D solid foams. These solid foams were employed either as pure hDAT, or combined with bCOL-I in a 3:1 proportion, to recreate a microenvironment compatible with stem cell survival and differentiation. We sought to investigate the effect of the adipogenic inductive extracellular 3D-microenvironment on human multipotent dental pulp stem cells (hDPSCs). We found that solid foams supported hDPSC viability and proliferation. Incubation of hDPSCs with adipogenic medium in hDAT-based solid foams increased the expression of mature adipocyte LPL and c/EBP gene markers as determined by RT-qPCR, with respect to bCOL-I solid foams. Moreover, hDPSC capability to differentiate towards adipocytes was assessed by PPAR-γ immunostaining and Oil-red lipid droplet staining. We found out that both hDAT and mixed 3:1 hDAT-COL-I solid foams could support adipogenesis in 3D-hDPSC stem cell cultures significantly more efficiently than solid foams of bCOL-I, opening the possibility to obtain hDAT-based solid foams with customized properties. The combination of human-derived ECM biomaterials with synthetic proteins can, thus, be envisaged to reduce fabrication costs, thus facilitating the widespread use of autologous stem cells and biomaterials for personalized medicine.This research was funded by the Basque Government (IT1751-22; to G.I.; ELKARTEK program 566 PLAKA KK-2019-00093; to N.B.), the Health Department of the Basque Government (grant No. 2021333012; to J.R.P.), and grant No. RYC-2013-13450 and grant No. PID2019-104766RB-C21 funded by MCIN/AEI/10.13039/501100011033 by the European Union (NextGenerationEU) “Plan de Recuperación Transformación y Resiliencia” (grants to J.R.P.)

    Osteogenic differentiation of human dental pulp stem cells in decellularised adipose tissue solid foams

    Get PDF
    3D cell culture systems based on biological scaffold materials obtainable from both animal and human tissues constitute very interesting tools for cell therapy and personalised medicine applications. The white adipose tissue (AT) extracellular matrix (ECM) is a very promising biomaterial for tissue engineering due to its easy accessibility, malleability and proven biological activity. In the present study, human dental pulp stem cells (hDPSCs) were combined in vitro with ECM scaffolds from porcine and human decellularised adipose tissues (pDAT, hDAT) processed as 3D solid foams, to investigate their effects on the osteogenic differentiation capacity and bone matrix production of hDPSCs, compared to single-protein-based 3D solid foams of collagen type I and conventional 2D tissue-culture-treated polystyrene plates. pDAT solid foams supported the osteogenic differentiation of hDPSCs to similar levels to collagen type I, as assessed by alkaline phosphatase and alizarin red stainings, reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) and osteocalcin/bone gamma-carboxyglutamate protein (BGLAP) immunostaining. Interestingly, hDAT solid foams showed a markedly lower capacity to sustain hDPSC osteogenic differentiation and matrix calcification and a higher capacity to support adipogenesis, as assessed by RT-qPCR and oil red O staining. White ATs from both human and porcine origins are relatively abundant and available sources of raw material to obtain high quality ECM-derived biomedical products. These biomaterials could have promising applications in tissue engineering and personalised clinical therapy for the healing and regeneration of lesions involving not only a loss of calcified bone but also its associated soft non-calcified tissues.This research was supported by the Basque Government (ELKARTEK program PLAKA KK- 2019-00093; to NB), MICINN retos I+D+i (PID2019- 104766RB-C21, to JRP) and UPV/EHU (PPGA20/22; to FU, GI). The authors would like to thank the staff members of the SGIKER services of the UPV/EHU: Lipidomic service (Beatriz Abad) and Analytical Microscopy (Ricardo Andrade, Alejandro Díez-Torre and Irene Fernández) for their technical assistance

    Resveratrol inhibits nonalcoholic fatty liver disease in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prevalence of nonalcoholic fatty liver disease (NAFLD) is high. NAFLD is linked to obesity, diabetes mellitus, and hypertriglyceridemia. Approximately 20% of patients with NAFLD will eventually develop cirrhosis. Our purpose was to investigate whether resveratrol decreased hepatic steatosis in an animal model of steatosis, and whether this therapeutic approach resulted in a decrease in tumor necrosis factor α (TNF-α) production, lipid peroxidation and oxidative stress.</p> <p>Methods</p> <p>Male Wistar CRL: Wi (Han) (225 g) rats were randomized into three groups. A control group (n = 12) was given free access to regular dry rat chow for 4 weeks. The steatosis (n = 12) and resveratrol (n = 12) groups were given free access to feed (a high carbohydrate-fat free modified diet) and water 4 days per week, and fasted for the remaining 3 days for 4 weeks. Rats in the resveratrol group were given resveratrol 10 mg daily by the oral route. All rats were killed at 4 weeks and assessed for fatty infiltration and bacterial translocation. Levels of TNF-α in serum, hepatic malondialdehyde (MDA), oxidative stress (superoxide dismutase, glutathione peroxidase, catalase and nitric oxide synthase) and biochemical parameters were measured.</p> <p>Results</p> <p>Fat deposition was decreased in the resveratrol group as compared to the steatosis group (Grade 1 vs Grade 3, P < 0.05). TNF-α and MDA levels were significantly increased in the steatosis group (TNF-α; 33.4 ± 5.2 vs 26.24 ± 3.47 pg/ml and MDA; 9.08 ± 0.8 vs 3.17 ± 1.45 μM respectively, <it>P </it>< 0.05). This was accompanied by increased superoxide dismutase, glutathione peroxidase and catalase and decreased nitric oxide synthase in the liver of resveratrol group significantly (<it>P </it>< 0.05 vs steatosis group). Bacterial translocation was not found in any of the groups. Glucose levels were decreased in the group of rats given resveratrol (<it>P </it>< 0.05).</p> <p>Conclusion</p> <p>Resveratrol decreased NAFLD severity in rats. This effect was mediated, at least in part, by TNF-α inhibition and antioxidant activities.</p
    corecore